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Optimal early development in most species is dependent upon a stable relationship between the mother
and her infant. The research described here focuses on the reciprocal nature of this dyad in rodents and
humans, with respect to the regulation of responsiveness to stress in both mother and offspring. Dietary
influences are critical not only to regulate infant growth but also to modulate the response of the neu-
roendocrine system to stress and, possibly, to influence some aspects of brain development. In particular,
we discuss the role of leptin, a protein produced in the adipose tissue and present in maternal milk, that
reduces responses to stress in the infant. We suggest that leptin acts on both central (hypothalamus and
hippocampus) and peripheral (pituitary, adrenal gland) targets in the infant to reduce exposure to gluco-
corticoids and enhance hippocampal development during a sensitive period of brain development. There
is also evidence to support the reverse regulatory influence, in which maternal state is profoundly affected
by stimulation from the young. During the period of lactation, mothers exhibit lower neuroendocrine and
behavioural responses to several types of stressors, except possibly those representing a threat to the in-
fant. This ability to “filter” relevant from irrelevant stimuli while caring for their young might be viewed as
adaptive for the mother–infant dyad, and the inability to filter adequately stressful stimuli could at least in
part be associated with the development of postpartum depression.

Chez la plupart des espèces, un développement précoce optimal dépend d’une relation stable entre la
mère et l’enfant. La recherche décrite ici porte avant tout sur la réciprocité de cette dyade chez les
rongeurs et chez les humains en ce qui a trait à la régulation de la réponse au stress chez la mère et le
nourrisson. Les influences alimentaires sont cruciales non seulement pour régulariser la croissance du
nourrisson, mais aussi pour moduler la réponse du système neuroendocrinien au stress et, peut-être, in-
fluencer certains aspects du développement du cerveau. Nous discutons plus particulièrement du rôle de
la leptine, protéine produite dans le tissu adipeux et présente dans le lait maternel, qui réduit les réactions
au stress chez le nourrisson. Nous sommes d’avis que la leptine agit à la fois sur des cibles centrales (hy-
pothalamus et hippocampe) et périphériques (hypophyse, surrénales) chez le nourrisson pour réduire
l’exposition aux glucocorticoïdes et améliorer le développement de l’hippocampe pendant une période
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Introduction

Among the complex social relationships observed in
altricial mammals, that between mother and infant is
possibly the most critical to the provision of optimal
conditions for development. Our research efforts have
concentrated on the reciprocal nature of this dyad,
with respect to the regulation of responsiveness to
stress in both mother and offspring (Fig. 1). Beginning
in the late 1950s, the pioneering work of Ader and
Grota,1 Denenberg et al,2 Levine3 and Levine et al4

established that environmental influences such as
handling or infantile stimulation of rats during the

neonatal period can lead to long-term changes in both
behaviour and response to stress. Over the last
3 decades, extensive efforts have been made to under-
stand how variations in maternal nutritional state or
behaviour could influence the development of respon-
siveness to stress in the infant, potentially leading to
long-term consequences for the functioning of the
hypothalamic–pituitary–adrenal (HPA) axis. In neona-
tal rats, for instance, maternal licking and grooming of
the pups appears to be particularly effective in main-
taining the relative quiescence of the HPA axis during
the first 2 weeks of life5–7 and in reducing neuroen-
docrine and behavioural responsiveness to stress in
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délicate du développement du cerveau. Des données probantes appuient aussi l’influence régulatrice in-
verse, soit que la stimulation émanant du nourrisson a un effet profond sur l’état de la mère. Au cours de
la période de lactation, les mères présentent des réponses neuroendocriniennes et comportementales
moins fortes à plusieurs types de facteurs de stress, sauf peut-être ceux qui menacent l’enfant. Cette ca-
pacité de «filtrer» les stimuli pertinents de ceux qui ne le sont pas tout en s’occupant du nourrisson peut
être considérée comme une capacité d’adaptation de la dyade mère-enfant, et s’il pourrait y avoir au
moins un lien partiel entre l’incapacité de filtrer adéquatement les stimuli stressants et l’apparition de la
dépression postpartum 

Reciprocal relationships

MOTHER

Infant

•  Feeding (e.g., GC, leptin, opioids, antibodies)

•  Temperature regulation (nesting bout duration,
posture)

•  Sensory stimulation (licking and grooming) 

• HPA regulation, responses to stress

• Hippocampal development,
learning and memory

• Sensory stimulation
    (suckling)

• Morphological and functional
neuronal changes supporting
lactation

•  HPA regulation, responses to
stress and emotionality

• Full expression of maternal
behaviour

Fig. 1: Schematic representation of the reciprocal relationships between
mother and infant, with particular emphasis on the regulation of responsive-
ness to stress in both members of the dyad. Knowledge of outcomes directly
linked to sensory stimulation and feeding is derived primarily from animal
studies. GC = glucocorticoids, HPA = hypothalamic–pituitary–adrenal axis,
nesting bout duration = the time the mother spends arched over her pups for
them to have access to the nipples.



adulthood.8 In contrast, repeated neonatal maternal
separation or exposure of the mother to stress during
late gestation or the early postpartum period, or both,
have been associated with a number of behavioural
impairments and heightened vulnerability to disease
in adulthood.9 Early variations in maternal care,
whether produced by handling, maternal separation
or even naturally occurring, have been associated with
molecular changes in the central nervous system
(CNS).10–15

Although variations in maternal care represent an
important factor in the development of the HPA axis
(stress axis) and behavioural regulation of the off-
spring, maternal state is also profoundly affected by
stimulation from the young. Many of the morphologi-
cal, neurochemical and physiologic changes,16,17 includ-
ing hyporesponsiveness to a variety of stressors,18–20

that are initiated in late pregnancy in the rat21 are main-
tained post partum by suckling stimulation from the
young. This situation is not unique to rodents. A recent
study conducted in breast-feeding women reported de-
creased plasma adrenocorticotropic hormone (ACTH),
cortisol, vasopressin, epinephrine and glucose re-
sponses to treadmill stress tests.22

In this paper, we will consider the high fat content of
maternal milk and leptin and their effect on the regula-
tion of responses to stress and some aspects of brain
development in the rat offspring. We will also examine
how the presence of the suckling infant modulates re-
sponsiveness to stress in the mother. Finally, the con-
cept of stimulus salience will be discussed in the con-
text of both rodent and human studies.

Mother-to-infant regulation of responsiveness
to stress

Developmental aspects of the HPA axis in neonatal rats

In all mammals, the activation of the HPA axis, which
is schematically illustrated in Figure 2,23 is a central
component of the integrated physiologic response that
occurs after exposure to various internal or environ-
mental stressors, or both. The synthesis and secretion
of glucocorticoids that are so critical for developmental
processes24,25 represent the final step in a neuroen-
docrine cascade beginning in the CNS. Somatic and
psychologic stressors, circadian drive and humoral in-
fluences initiate this cascade by releasing multiple
ACTH secretagogues of hypothalamic origin into the

hypophysialportal circulation.26–28 Among them,
corticotropin-releasing factor (CRF), elaborated by
perikarya in the hypothalamic parvocellular paraven-
tricular nucleus (pPVN),29,30 is critical in the regulation
of adenohypophysial ACTH secretion27 and pro-
opiomelanocortin (POMC) gene expression.31,32 In ro-
dents, weaker secretagogues, such as arginine vaso-
pressin (AVP), modulate ACTH secretion, but their ac-
tions are dependent upon the presence of CRF.33–35 The
functional activity of the HPA axis is critically depen-
dent on glucocorticoid feedback mechanisms36,37 that
serve to regulate basal levels as well as damp the
stressor-induced activation of the HPA axis and to shut
off further glucocorticoid secretion.38 Together, these
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Fig. 2: Schematic representation of the activation of the
HPA axis in response to stress. Stimulatory pathways to
the HPA axis are shown in green, and inhibitory path-
ways are shown in red. The primary integrator site that
receives multiple inputs from the periphery, as well as
from central sites, is the hypothalamic paraventricular
nucleus (PVN), which contains corticotropin-releasing
factor neurons. 1L-1ββ = interleukin-1ββ, SP = substance P,
GABA = γγ-aminobutyric acid, BNST = bed nucleus of the
stria terminalis, CRH = corticotropin-releasing hor-
mone, AVP = arginine vasopressin, A = amygdala, P =
pineal gland, NMDA = N-methyl-D-aspartate, HIP = hip-
pocampus, 5-HT = serotonin, NA = noradrenaline,
ACTH = adrenocorticotropic hormone. Reprinted with
permission from Blackwell Publishing Ltd. (J Neuroen-
docrinol 2001;13:1009-23).23
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mechanisms permit rapid adjustment of the HPA axis
in response to the demands of the environment.

Information about the internal and external environ-
ment reaches the hypothalamic neurosecretory cells
over a broad and diffuse neural network.39 Sensory in-
formation from the oral cavity, thoracic cavity and the
abdominal viscera is carried to the brain stem via the
glossopharyngeal and vagus nerves, with other inputs
conveyed by the dorsal roots. Cell groups within the nu-
cleus of the solitary tract, A2 and C2 in particular,40 re-
ceive baroreceptor41 as well as somatosensory inputs.42

Efferents from the A2, C1, C2 and C3 regions heavily in-
nervate the CRF-rich pPVN area,43 with additional
sparse innervation from the ventrolateral medulla (A1)
and the locus coeruleus (A6).40,44–46 Emotional stimuli are
mediated through corticolimbic pathways that funnel
information to the pPVN via the bed nucleus of the stria
terminalis, the lateral and medial septum, the fimbria,
the amygdala and the preoptic area.47–51 Intrinsic stimuli
(e.g., humoral factors, energy substrate availability, core
temperature) may be mediated through activity of the
vagus nerves, or via humoral agents acting directly on
neurosecretory cells or via interneurons.

Following the early work by Selye52 that established
criteria for measuring responses to stress in vivo, the
pioneering work of Schapiro53 identified a develop-
mental stage in the rat during which responsiveness to
stress was abolished; therefore, this period was called
“the stress nonresponsive period” (SNRP). However,
later studies showed that in marked contrast to stimu-
lated adrenal corticosterone secretion, which is
blunted during the first 2 weeks of life in the rat,
plasma ACTH responses to a variety of stressors are
not significantly altered during this same period.54–57

Qualitative and quantitative plasma ACTH responses
to stress in neonates vary as a function of the stressor
applied and time after the onset of stress. Stressors such
as ether,57,58 cold,54 histamine,54 endotoxin,59 interleukin-
1β injection,60 pain,61 social isolation and footshock,62

morphine injection63 or maternal separation5,64–67 result
in significant activation of the hypothalamic–pituitary
unit. These findings led to a revision of the original
concept to that of a “stress hyporesponsive period”
(SHRP), which is specifically characterized by blunted
adrenal responses to stress during the neonatal
period.68 Adrenal stress hyporesponsiveness does not
appear to be a simple maturational process, because
adrenal responses to stress in the fetal rat in late gesta-
tion and in neonates in the first day after birth55,56 are

reported to be functionally intact. In contrast to many
of the stressors used in neonates, the composite stress
of maternal deprivation for 24 hours produces large
increases in circulating corticosterone concentra-
tions54,67,69 and increases adrenal sensitivity to ACTH.70,71

Of the 3 main factors that are removed in the maternal
separation paradigm (active sensory stimulation, food,
passive contact), it has been suggested that milk depri-
vation may mediate changes in adrenal sensitivity66

and, as will be discussed later, a rapid decline in circu-
lating leptin levels following maternal separation in
neonates might constitute a mediating factor. Taken
together, these data support the existence of functional
hypothalamic–pituitary secretion and effective re-
sponses to specific stressors throughout the neonatal
period of the rat. Although changes in the time course
and pattern of secretion as well as the magnitude of
the response or the ratio of POMC products that are
secreted can be attributed to maturational processes,
evidence is accumulating to support the functionality
of the hypothalamic–pituitary unit during the neona-
tal period in the rat.

The late gestational, perinatal and postnatal periods
in most species are characterized by intense synaptic or-
ganization in the CNS. This process of synaptogenesis
and remodelling underlies the functional maturation of
major neurotransmitter and neuromodulatory systems.
In later stages of maturation and adulthood, several of
these processes can be influenced by glucocorticoid pro-
duction, the end product of HPA activation. Excess glu-
cocorticoid production is deleterious to brain matura-
tional processes, whereas low adrenal corticosterone
secretion in neonatal life allows for adequate brain de-
velopment. Species differ in their state of CNS matura-
tion at birth. In the rat, the postnatal period is critical for
the development and integration of the various central
and peripheral systems that maintain homeostasis. In
contrast, many of these same systems have reached a
greater degree of organization at birth in guinea pigs,
sheep, nonhuman primates and humans.

A high-fat diet and leptin regulate stress responses in the
offspring

Breast milk is universally agreed to be the single best
food for newborns and developing infants in all mam-
malian species. As noted by Locke,72 “breast milk is a
highly complex substance that is more than the sum of
its parts.” Bioactive factors such as immunoglobulins,



enzymes, growth factors, hormones, glycocongugates
and milk lipids can confer immunoprotection and af-
fect development.73 Suckling infants are naturally ex-
posed to a diet that is exceptionally rich in fat, and fat
content correlates positively with the length of the inter-
val between periods of suckling across species. Mature
human milk from well-nourished communities contains
between 3.8 g/100 mL and 4.8 g/100 mL of fat com-
pared with 1.1 g/100 mL of proteins and 6.8 g/100 mL
of lactose.74 Although the total fat content and composi-
tion of human milk is greatly influenced by the degree
of nutrition and the type of diet ingested by the
mother, the fact that human milk contains large
amounts of long-chain polyunsaturated fatty acids
makes this nutrient essential to tissue and organ
growth as well as brain development.75 For instance,
the accumulation of docosahexaenoic acid (DHA) in
brain cortical neurons appears to affect later cognitive
development,76 and supplementation of DHA to young
infants has been shown to influence the development
of visual acuity77 and some aspects of mental develop-
ment.77,78 Dietary fat intake and the subsequent changes
in brain membrane fatty acid composition have also
been implicated in the development of and susceptibil-
ity to some mental illnesses.79

Another important component of milk is leptin; this
protein, which is produced predominantly by white
adipose tissue, can signal the state of energy to the brain
and influence food intake and thermogenesis,80–82 as well
as a number of other processes related to cellular prolif-
eration and steroidogenesis.83–85 Plasma levels of leptin
are naturally high in human neonates86 and developing
rodents.87,88 One of the main sources of circulating leptin
in neonatal rats is likely to be maternal transfer through
milk, because leptin levels rapidly decline to unde-
tectable levels in pups separated from their mothers for
24 hours. An alternative source would be endogenous
production by white and brown adipocytes in neonatal
rodents.89 In rats, we have demonstrated that leptin con-
tent in the milk can be influenced by maternal diet and
that feeding a high-fat diet to mothers during the last
week of pregnancy and throughout lactation can signif-
icantly increase leptin in the milk, as well as circulating
levels of leptin in the pups. Conversely, restriction of
food to the mother (receiving 60% of the ad libitum ra-
tion) during this same period results in extremely low
levels of leptin in the offspring. Thus, maternal diet can
modify significantly exposure of the offspring to leptin
during a critical period of development.

Our interest in leptin arose from earlier studies in
which we found that feeding a high-fat diet to the
mother could significantly reduce the magnitude of the
hormonal (ACTH) response to a stressor in her off-
spring.90 Precedents for the effects of high-fat feeding91

or even a direct effect of fatty acids92 on the activity of
the HPA axis were documented in adult animals. Sur-
prisingly, in adult rats, high-fat feeding exacerbates the
neuroendocrine response to stress and causes pro-
longed secretion of glucocorticoids. However, in devel-
oping rats, elevated fat in milk appears to blunt the
pups’ HPA response, and leptin might be a critical me-
diator in this effect. Indeed, when pups were adminis-
tered leptin daily during the first 10 days of life and
tested for their ACTH and corticosterone response to
stress on postnatal day 10 (PND10), we observed that
the overall magnitude of the response was reduced by
leptin treatment compared with that in controls. An in-
teresting feature of the response, however, was that the
duration of the response was shorter, whereas the peak
response was not modified.93 Such a differential pattern
of ACTH secretion has been documented in numerous
models of chronic stress and aging,94 whereby delayed
return to baseline levels of ACTH or corticosterone se-
cretion indicates impairment in the glucocorticoid
feedback system. We found that leptin caused a faster
return to baseline secretion and, thus, we hypothesized
that leptin treatment might have enhanced, rather than
impaired, glucocorticoid feedback efficiency on the
HPA system.93 To test this hypothesis, we measured
the inhibition of stress-induced ACTH secretion by
dexamethasone injection in pups that had received
long-term treatment with vehicle or leptin at daily
doses of 1 mg/kg or 3 mg/kg of birth weight.95 Our re-
sults confirmed that long-term leptin treatment can en-
hance glucocorticoid feedback efficiency in developing
rats and showed that part of this effect might be medi-
ated by increases in glucocorticoid receptor expression
(mRNA and protein levels) in the hippocampus and
hypothalamic PVN, which are both important target
sites for glucocorticoid feedback onto the HPA axis.36

Interestingly, a significant relation between leptin
and glucocorticoid secretion was also observed in treat-
ment-naive neonates. We found that naturally occur-
ring elevated leptin concentrations in the plasma were
inversely related to basal corticosterone secretion dur-
ing the first 3 weeks of life, which is consistent with re-
sults reported in adult rodents and humans.96,97 Because
of maternal transfer at the time of delivery, plasma
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corticosterone levels are high perinatally, decline dra-
matically over the first few days of life98 and remain
low until the third week of life, as described previ-
ously.68 In contrast, plasma leptin concentrations de-
cline briefly at birth and then increase to levels higher
than that of the adult rat throughout the suckling pe-
riod. The robust inverse relation between cortico-
sterone and leptin therefore suggests that leptin might
suppress basal adrenal production of corticosterone in
developing rat pups. To expand on recent in-vitro stud-
ies performed on adult adrenal cells that showed a di-
rect inhibitory effect of leptin on steroidogenesis,99 we
conducted both in-vivo and in-vitro studies on freshly
dispersed neonatal adrenal cells to address the possible
direct effect of leptin on the developing adrenal gland.
We tested the response to leptin of adrenocortical cells
originating from treatment-naïve pups on PND10
(with normal circulating levels of leptin) and pups sep-
arated from their mother for 24 hours, which rapidly
reduced endogenous circulating leptin concentrations
to undetectable levels. We demonstrated that, in vitro,
leptin did not affect basal secretion of corticosterone
from adrenocortical cells but significantly reduced the
ACTH-stimulated corticosteroid release. The effect of
leptin was observed in both treatment-naïve and sepa-
rated pups, despite the higher basal corticosteroid se-
cretion observed in separated pups.100 Indeed, in these
separated pups, the higher level of corticosterone was
correlated with a general increase in all the steroido-
genic machinery (peripheral benzodiazepine-type re-
ceptor [PBR], steroidogenic acute regulatory protein
[StAR], 3β-HSD and P450c11).

The effect of leptin was not specific to cells of the fas-
ciculata region of the adrenal cortex that produce corti-
costerone because, as documented in adults,101,102

ACTH-stimulated aldosterone production from the
zona glomerulosa was also reduced by leptin. Thus, it
is possible that leptin impaired ACTH receptors in
these regions and/or that the inhibitory effect of leptin
on adrenal corticosteroid production is attributed to a
significant decrease in 2 intracellular proteins (StAR
and PBR) that are rate limiting for corticosteroidogene-
sis.103–105 Indeed, we found that leptin treatment in vivo
reduced the expression of StAR103 and PBR proteins af-
ter stimulation with ACTH.106

Hence, in agreement with the findings of earlier
studies of the role of feeding in HPA function,70 it is
tempting to speculate that naturally occurring high
concentrations of leptin in developing pups are critical

to maintaining blunted adrenal glucocorticoid secre-
tion during the neonatal period.68 In addition to the
regulation of neuroendocrine activity, the functional
consequences of opposing actions of leptin and gluco-
corticoids in rodents on regulation of food intake, body
weight gain and thermogenesis have also been investi-
gated in adult rats.107–109 Whereas glucocorticoids appear
to limit the action of leptin on food intake in rats108 and
on body weight gain and fat stores in normal mice,109

other reports have failed to show a significant interac-
tion between the 2 hormones on food intake and ther-
mogenesis in genetically obese ob/ob mice.107 In devel-
oping rodents, the possibility that these 2 hormones
have opposing effects on energy balance is difficult to
determine using the same parameters, because the pri-
mary role of leptin of limiting food intake is not ob-
served in neonatal rats.110

In summary, the maternal regulatory influence on
the activity of the HPA axis of the offspring is ex-
pressed at least in part through maternal dietary intake
of fat contributing to elevated circulating levels of lep-
tin in developing rats. Elevated levels of this hormone
might be protective to the brain by maintaining a
“brake” on the activity of the HPA axis, and this in-
hibitory effect can be expressed at various levels of the
HPA axis by inhibition of stress-induced CRF mRNA
expression,93,111 reduced neuroendocrine responses,93,112

enhanced glucocorticoid feedback efficiency95 and inhi-
bition of adrenal glucocorticoid production.99,100

What are the critical implications of these findings
for human nutrition in the postnatal period in term and
preterm neonates? As mentioned earlier, leptin is
an essential component of maternal human73,113 and
cows’114 milk and has recently been found in variable
amounts in some infant formula compositions.114 Mod-
ulation of leptin levels in milk can be achieved by in-
creased dietary fat intake90 and, in particular, by an in-
creased proportion of n-3 and n-6 polyunsaturated
fatty acids,115 as demonstrated in animal studies. How-
ever, it is currently not known whether changes in di-
etary intake in nursing mothers can alter milk leptin
levels,73 in addition to changing milk fat content quite
dramatically.74,116 Recent studies have demonstrated
that serum leptin levels in breast-fed infants are higher
than in formula-fed infants during the first year of
life,117 although there is no strong relation between milk
leptin and adiposity in the infant.118 This does not pre-
clude a more subtle and long-term effect of varying de-
gree of exposure to leptin in the perinatal and early



postnatal period in humans. Indeed, leptin might
prime or set the endocrine and metabolic system at a
different homeostatic level of energy regulation, thus
altering the propensity toward obesity.72 There is indi-
rect evidence for this in studies showing that human
milk intake is associated with lower leptin concentra-
tions relative to fat mass in adolescence119 and lower
risk of being overweight during older childhood and
adolescence.120–123 Although leptin is certainly not the
only factor responsible for the beneficial effects of
breast-feeding on the reduced risk of developing obe-
sity, its relation to fat intake and deposition makes it an
important endocrine factor to consider in program-
ming later energy balance and metabolism. In addition
to the metabolic regulatory aspect of leptin, this hor-
mone is important for a number of developmental
processes including angiogenesis, bone metabolism,
hematological differentiation, growth, immune func-
tions and, possibly, brain development as well.124,125 In
particular, it has been demonstrated that feeding breast
milk, which contains significant amounts of leptin, to
premature infants is associated with a reduced risk of
gastrointestinal infectious disorders72 compared with
that found for formula-fed infants. This suggests that
leptin, which is normally supplied by the placenta and
the fetus in utero and then supplied through breast
milk, could serve as a modulating agent on the im-
mune system of preterm infants.126,127

Putative role of leptin on hippocampal development in pups

Leptin is first and foremost considered to be a hormone
that regulates energy balance and food intake in most
mammals. In utero, leptin is secreted by the placenta
and plays an important role in placental and fetal
growth. In the maternal compartment, production of
leptin might be important for placental growth, angio-
genesis and immunomodulation, whereas leptin pro-
duced in the fetal compartment (originating from pla-
centa and fetal adipose tissue primarily) modulates
insulin–glucose relations, growth and insulin-like
growth factor production as well as immunity.127 The
demonstration that leptin levels in the fetal compart-
ment are closely related to birth weight128 emphasizes
the critical role of this protein on fetal growth and de-
velopment. Of leptin’s multiple actions, we have cho-
sen to investigate its putative role in the early develop-
ment of brain function, because high levels of leptin
observed during the perinatal and postnatal periods

coincide with a period of intense neurogenesis and
synaptogenesis in the CNS.129,130 Typically, circulating
plasma levels of leptin are about 5–10 ng/mL in
PND10 pups and decrease to 0.5–1.5 ng/mL in weaned
rats on PND35 and in adults. The hypothesis that the
high leptin levels seen in developing pups play a criti-
cal role in brain development and synaptogenesis is
based, in part, on the observation that many structural
neuronal abnormalities are found in leptin-deficient ro-
dent models (ob/ob mouse, db/db mouse or fa/fa rat).131,132

These abnormalities include reduced brain weight and
DNA content, impaired myelinization and increased
neurodegeneration in the hippocampus. In the ob/ob
mouse, leptin replacement during the postnatal period
increases brain growth and DNA content133 and in-
creases synaptic proteins such as syntaxin-1 and synap-
tosomal associated protein (SNAP-25).134 Evidence in
support of this hypothesis comes from our own recent
data from DNA microarrays and polymerase chain re-
action analysis showing that in normal rat pups, leptin
administration increases the expression of several pro-
teins involved in synaptogenesis and neurotransmitter
release (synapsin-2A, synaptophysin, SNAP-25)
(Table 1). These data are particularly interesting in light
of our previous findings that circulating leptin levels
increase about 3-fold when pups feed on a high-fat
milk, which raises the intriguing possibility that leptin
levels are 1 pathway through which early nutritional
variables modify brain development. In this context, it
is noteworthy that exposure to elevated leptin concen-
trations coincides with the presence of leptin receptors
in the developing brain.135,136 In adults, functional leptin
receptors are found in the hypothalamus and extrahy-
pothalamic sites such as the hippocampus, thalamus
and cerebral cortex, making these areas susceptible to
direct modulation by leptin.135 Among these sites, the
developing hippocampus is perhaps the most impor-
tant for long-term regulation and integration of neu-
roendocrine stress responses as well as cognitive re-
sponses. Extensive neurogenesis and synaptogenesis
occurs in this region during postnatal development in
rodents and humans,130 and neurogenesis of granule
cells in the dentate gyrus persists throughout life, main-
taining hippocampal plasticity required for long-term
potentiation and memory function.137 In adult rats, lep-
tin has been shown to enhance N-methyl-D-aspartate
(NMDA) receptor function via increased Ca2+ influx
into hippocampal CA1 neurons. This response to leptin
was specific to NMDA receptors, because there were
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no leptin-induced changes in the electrophysiologic
properties of neurons modulated by α -amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
receptors.138 Our current work has established that con-
ditions associated with a reduction in circulating leptin
levels during the first 2 weeks of life (in pups of food-
restricted mothers) results in a significant decrease in
NMDA receptor binding in the hippocampus of PND14
pups.139 In addition, daily leptin treatment during the
first 2 weeks of life causes long-term changes in the ex-
pression of the NMDA receptor subunits NR2A and
NR2B mRNA in the hippocampus,140 suggesting that
leptin-induced functional modifications in hippocampal
activity might persist until adulthood in rodents.

Although the presence of leptin receptors in the de-
veloping hippocampus suggests that leptin may have a
direct effect on the development of this structure, lep-
tin could also affect hippocampal function indirectly by
increasing glucocorticoid receptor density.95 This effect
could be mediated by a reduction in endogenous corti-
costerone secretion or by accelerated neurogenesis in
this particular structure. Hippocampal neurogenesis
and synaptogenesis are highly dependent on adequate
amounts of glucocorticoids (although not in excess)
and glucocorticoid receptors.141 The effect of leptin on
hippocampal glucocorticoid receptor expression (in

particular in the dentate gyrus) might also be the result
of accelerated neurogenesis in this particular structure.
We are currently investigating whether leptin acts as a
facilitatory factor in neurogenesis and glucocorticoid
receptor expression on newly formed neurons (Fig. 3).
Whether the actions of circulating leptin on the hip-
pocampus are direct or indirect through modulation of
the glucocorticoid environment, the consequences of
reduced exposure to this protein during a critical win-
dow of brain development cannot be ignored. Simi-
larly, in human fetuses and neonates, reduced placen-
tal and/or milk leptin production during reduced
intrauterine growth and malnutrition has the potential
to impair developmental processes in the CNS. The un-
derlying mechanisms and long-term consequences of
inadequate leptin exposure during development on
brain functions remain to be elucidated using long-
term immunization with antisera or specific receptor
antagonists when available.

Infant-to-mother regulation of responsiveness
to stress

There is no question that maternal influence is critical
to the optimal physiologic and neurologic develop-
ment of the offspring. We have noted earlier that

Table 1: Expression of mRNA levels for selected hippocampal proteins on postnatal day (PND) 10 by DNA membrane
microarray*

Optical density Optical density

Gene
Vehicle

(Group 1)†
Leptin

(Group 2)†

Change in
optical
density

(Group 2/1)
NSS

(Group 3)‡
Lept-AB

(Group 4)‡

Change in
optical
density

(Group 4/3)

GluT and GluT-R glutamate transporter 34 167 4.93 63§ 34 0.54
Myelin proteolipid protein (PLP) 180 684 3.79 81§ 37 0.45
Synapsin 2A 315 947 3.00 230x 79 0.34
Synaptophysin, p38 387 868 2.24 228§ 46 0.20
Glutamate receptor 2 precursor 306 680 2.22 319x 274 0.86
Synaptosomal associated protein 25 (SNAP-25) 836 1813 2.17 462x 269 0.58
Insulin-like growth factor–binding protein 5
precursor (IGF-binding protein 5 [IGFBP5, IBP5])

165 52 0.32 54§ 41 0.75

Neuropeptide Y5 receptor 144 45 0.31 51§ 49 0.96
Insulin-like growth factor II (IGF-II) 495 78 0.16 428§ 84 0.20
Neuromodulin, axonal membrane protein GAP43 3202 2229 0.70 918x 534 0.58
Synaptobrevin 2 (SYB2), (VAMP2) 418 643 1.54 135x 30 0.22
N-methyl-D-aspartate receptor (NMDAR1), NR1 ND ND NDx ND
NMDAR2B (NR2B) 773 752 0.97 79x 47 0.59
NMDAR2A (NR2A) 93 159 1.71 NDx ND

Note: Lept-AB = leptin antiserum; ND = not detected; NSS = normal sheep serum.
*All data from 4 days’ exposure to radiographic film. Results obtained for all groups on membranes exposed for 20–24 h.
†Rats received daily vehicle or leptin injections (3 mg/kg body weight, intraperitoneally) during PND 2–9 (groups 1 and 2).
‡Rats received daily NSS or Lept-AB during PND 2–9 (groups 3 and 4).
§Results obtained on membranes exposed for 18 d.



maternal nutrition, as well as maternal touch, could
represent an important aspect of infant regulation, as
described in many other human and animal stud-
ies.8,142,143 The beneficial influences of the mother–infant
dyad are certainly not limited to maternal inputs into
infant development and extend also in the other direc-
tion in ways that have received far less consideration to
date. Understandably, much emphasis has been placed
on early determinants of adult pathologies in an effort
to develop preventive methods and care systems that

can adequately address the needs of our present soci-
ety. It has been known for some time that transgenera-
tional transmission of mothering style can have long-
term consequences on the well-being of families,144 and
emerging animal studies are starting to unravel some
of the putative genetic and/or environmental mecha-
nisms of this transmission.8,145–148 Alternatively, infant
temperament might influence mothering style,149–151 and
sensory stimuli provided by the infant are known
to modify a number of physiologic and behavioural
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High-fat diet

MOTHER

Infant

•    Reduces hypothalamic CRF expression
• Inhibits adrenal GC production
• Reduces HPA responses to stress
• Enhances GC feedback efficiency
• Increases GC receptor expression in the

hypothalamus and hippocampus
• Potential role in hippocampal synapse

formation, NMDA-R-mediated functions?

   Plasma leptin

        Leptin in milk

Fat mass

Optimal conditions for
CNS development

No reduction of food
intake

Fig. 3: Illustration of the putative mechanisms that mediate the effect on the
offspring of high-fat feeding of the mother. Through an increase in maternal
fat mass and leptin concentrations in the milk, a maternal high-fat diet in-
creases leptin transfer and circulating levels of this protein in the infant. De-
spite a lack of effect on food intake in pups on postnatal day 10, leptin has
been shown to reduce significantly the activation of the HPA axis after expo-
sure to a stressor and, thus, might be considered to be “protective” during
neonatal development. NMDA-R = NMDA receptor, CNS = central nervous
system.
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responses in the mother.152–154 In the second part of this
paper, we will discuss how the presence of the infant
and the suckling stimulus can blunt responsiveness to
stress in the mother.

Hyporesponsiveness to stress in nursing mothers

In several species, the period of lactation represents a
unique physiologic condition that is well defined in
terms of duration, stimulus (suckling) and hormonal
milieu and is associated with changes in behaviour,155

metabolic regulation,156 central morphological
plasticity16 and neuroendocrine functions.157,158 In partic-
ular, female rats during the late gestation period,159,160

parturition161 and lactation display a reduction in HPA-
axis responses to a variety of physical and metabolic
stressors, including hypertonic saline injection, swim
stress, ether stress, lipopolysaccharide injections,19,162,163

as well as psychologic stressors including noise, immo-
bilization or social stress.164–167 This phenomenon is not
unique to rodents, because a study conducted in
breast-feeding women demonstrated a similar hor-
monal hyporesponsiveness following the stress of
treadmill exercise.22 Several of the hormonal changes of
pregnancy and lactation are likely to contribute to the
hyporesponsiveness to stress seen at this phase of the
life cycle. During the first 2 weeks of lactation, females
exhibit high levels of prolactin and oxytocin release,168

tonically elevated corticosterone and progesterone se-
cretion,163,169 low, diestrus levels of estrogens,170 in addi-
tion to decreased central neuronal responsiveness to
stimuli.171,172 The state of hyporesponsiveness to stress
observed during lactation is thought to result from
mechanisms occurring at various sites and spanning
the late-pregnancy and lactation periods. These adap-
tive mechanisms, including modifications to the neu-
ronal phenotype of PVN neurons,17 changes in pitu-
itary sensitivity to ACTH secretagogues160,173 and
hormonal variations, are closely linked to the presence
of the suckling stimulus, because removal of the pups
restores most of the neuroendocrine and morphologi-
cal changes to normal within 1–3 days. It is worth high-
lighting at this point that lactation is a very dynamic
state both in terms of the distinct regulatory mecha-
nisms being predominant at specific times in the lacta-
tion period (early v. late lactation) and the morphologi-
cal and functional plasticity that is observed during
this period in hypothalamic neurons. For instance, po-
tentiated and concerted bursts of oxytocin secretion are

possible because of increased synaptic contacts be-
tween hypothalamic supraoptic neurons and concomi-
tant glial retraction.16 In our own work, we have
demonstrated that the phenotype of hypothalamic
PVN neurons changes in lactation to express greater
amounts of vasopressin in CRF-expressing neurons
compared with those in virgin females.17

Although a detailed investigation of the putative
mechanisms that may lead to hyporesponsiveness to
stress during lactation is well beyond the scope of this
paper, some of these mechanisms deserve particular at-
tention. For instance, lactation induces critical changes
in central neurotransmitter release that are both region
specific and neurotransmitter specific. Changes in
dopaminergic activity have been implicated in pro-
lactin release174,175 and in mediating several aspects of
maternal behaviour (e.g., pup retrieval, licking and
grooming).176–180 Alterations in serotonergic181 and opi-
oid182,183 activity have also been documented, but the
central noradrenergic/adrenergic system, which is a
critical regulatory component for HPA activity in nor-
mal male and female rats, may be the most studied in
relation to the stress or HPA axis.184 The present con-
sensus on the effects of norepinephrine on CRF neu-
rons of the PVN is that α-1 adrenergic receptors medi-
ate the stimulatory effects of norepinephrine at low
concentrations (< 5 nmol/L) and that binding to in-
hibitory presynaptic (and possibly postsynaptic) α-2
and to postsynaptic β-2 adrenergic receptors would be
predominant at higher endogenous norepinephrine
concentrations and would inhibit the activity of CRF
neurons.185 Further inhibition of CRF release would oc-
cur through the well-documented action of α-1 adren-
ergic receptors in potentiating cyclic adenosine
monophosphate responses mediated by beta adrener-
gic receptors.186 Although suckling increases norepi-
nephrine turnover in the rostral PVN and supraoptic
nucleus,187 which are sites that contain most of the oxy-
tocinergic neurons, the same suckling stimulus appears
to have an opposite effect on PVN neurons that control
HPA activity. Indeed, we have previously demon-
strated that reduced activity of noradrenergic afferent
pathways to the PVN of the hypothalamus and lower
secretion of norepinephrine at the level of CRF neurons
of the PVN could reduce responsiveness of these neu-
rons to stressors in lactating mothers.188–190 Differential
modulation of noradrenergic receptor–mediated acti-
vation of PVN neurons160,191 has also been dem-
onstrated. In particular, lactating females have been



found to be less responsive to α-1 adrenergic receptor
agonists in vivo and on in-vitro electrophysiologic
recordings of PVN neurons.191 Taken together, these re-
sults suggest that lactation affects different subsets of
noradrenergic neurons projecting to the PVN and that
reduced responsiveness to stress in lactation might be
mediated in part by a reduced ability of noradrenergic
terminals to activate pPVN neurons.

In addition to altering HPA-axis activity and stress
responses, there is good evidence that changes in nor-
adrenergic function are also implicated in behavioural
regulation and, in particular, emotional responses to
acoustic startle. Indeed, lactating females were found
to be more sensitive to intracerebroventricular injection
of an α-2 adrenoreceptor antagonist, yohimbine, com-
pared with virgin females when tested in the acoustic
startle paradigm.192 The altered startle response is only
1 of the multiple behavioural components that are
modified in lactation. Lactating females exhibit re-
duced fear and neophobia165,193,194 and reduced acoustic
startle responses,192 and they appear to be less emo-
tional in the open field.167,192 Interestingly, however, the
diminished acoustic startle response of lactating fe-
males can be quickly restored to normal by fear poten-
tiation, suggesting that the behavioural hyporesponsiv-
ity to stress of lactating females might be situation
specific. Although we did not measure the neuroen-
docrine responses to stress in the fear-conditioning
paradigm, previous studies have shown that the hor-
monal response to a stressor in lactating rats can also
be modulated by situational variables such as the state
of the pups,195 as will be discussed in the next portion of
this paper (Fig. 4).

Pups’ presence modulates responses to stress in mothers

Somatosensory stimulation provided by the suckling
pups is critical to maintaining the behavioural, hor-
monal, morphological and functional changes of lacta-
tion. In addition to nipple stimulation at the time of
suckling, pups also provide important sensory stimula-
tion to the dam’s ventrum when they are attempting to
root to the nipple.196 A comparable type of stimulation
has been described in human infants who often massage
the breast when they are feeding.152,197 Both types of sen-
sory stimulation might be critical to maintaining neu-
roendocrine changes in lactating mothers and, in partic-
ular, to blunting responsiveness to stress. However,
earlier studies have also shown that the magnitude of

the maternal response to stress can be influenced by the
state of the pups. Mothers reunited with their previously
shocked pups showed a greater activation of the HPA
axis and, consequently, a greater elevation of plasma
corticosterone compared with females reunited with
pups that were only handled.195 In this study, it was con-
cluded that the mother responded to specific cues emit-
ted by the shocked pups only when she was not able to
have contact with and nurse them. In addition to the
state of the pups or what might be better defined as the
stimuli associated with particular pup states acting as
modulators of the maternal stress response, it is possible
that the specific appraisal of the stressful situation by the
mother plays an important role in “gating” the neuroen-
docrine response. This hypothesis is based on our obser-
vation that the reduced acoustic startle response of nurs-
ing females was rapidly restored to normal after fear
potentiation,192 suggesting that the fear component of a
stressor could supersede lactation-induced inhibition of
the behavioural response to stress. In terms of neuroen-
docrine regulation, this hypothesis has never been
tested, because lactating females are generally exposed
to various stressors in the absence of their pups (e.g.,
ether stress, swim stress, restraint). By analogy, we hy-
pothesized that the magnitude of the neuroendocrine re-
sponse to stress in lactating females would be depen-
dent upon the saliency of the stressor to the infant and
on the ability of the stressor to elicit a fear component.
Stressors that represent a direct threat to the infant could
provide a sufficient fear component to eliminate hypore-
sponsiveness to stress and induce potent neuroen-
docrine and behavioural responses in the lactating
mother. We tested this hypothesis by measuring the
neuroendocrine responses of lactating females to a psy-
chologic stressor (male intruder or predator odour) in
the presence or the absence of their pups. As anticipated,
lactating females in the presence of their pups displayed
significantly larger responses to psychologic stress com-
pared with the same females tested in the absence of
their pups.198 In fact, when tested in the presence of their
pups, early lactating females displayed no blunting of
the stress response, because the magnitude of the ACTH
and corticosterone responses were similar to those in
virgin females. This clearly shows that the presence of
the pups at the time of exposure to a psychologic stres-
sor enhanced the emotional salience of the stimulus (it
changed the stimulus characteristics of the situation)
and allowed bypass mechanisms normally in place to
blunt the neuroendocrine response. We would like to
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postulate that specific central mechanisms (e.g., reduced
noradrenergic activation of PVN neurons, reduced re-
sponsiveness of cortical neurons to NMDA, increased
oxytocin and vasopressin expression and function,
altered opioid tone) are in place in nursing females to
“filter” environmental challenges efficiently and main-
tain reduced activity in the HPA axis. However, when
stimuli that are directly threatening to the pups are pre-
sented, these filtering systems are superseded by other
mechanisms that allow an adequate neuroendocrine
and behavioural response to the stressor. We suspect
that part of this activation is provided by structures such

as the prefrontal cortex, amygdala and the bed nucleus
of the stria terminalis that are implicated in the process-
ing of emotional information as well as the control of the
HPA axis. Further work on this circuitry is currently be-
ing performed in our laboratory.

As noted previously, lactation is a very dynamic state
dictated by varying energetic and behavioural demands
placed on the mother by her pups. Our experiments
have demonstrated the critical role of the pups’ pres-
ence on the regulation of the stress response in the early
phase of lactation (i.e., within the first 5 days post par-
tum). During this period, females are behaviourally

MOTHER

Infant

Oxytocin release

Vasopressin colocalization in PVN

CRF expression in PVN

NEPI release and sensitivity in PVN

Startle response and emotionality

Blunted stress responses
Passive infant protection

Threat to the
infant

Increased HPA and
behavioural stress responses

Active infant protection

Sensory stimulation

Fig. 4: Changes in maternal endocrine and behavioural responsiveness to
stressors that are maintained by the sensory stimulation provided by the
pups. This schema illustrates our hypothesis that central mechanisms that
maintain blunted responses to stress in lactating females can be superseded
when the stressor represents a direct threat to the infant. NEPI = norepi-
nephrine. 



more responsive to stimuli emitted by pups199 and dis-
play greater aggression toward male intruders198,200,201

and larger hormonal responses to stress compared with
later in the lactation period.20 Thus, the ability to re-
spond adequately to threatening stimuli might be en-
hanced compared with later in lactation when the pups
are more mobile and less dependent on the presence of
their mother for urination/defecation, feeding and ther-
moregulation. At middle lactation (around PND10–14),
central regulatory mechanisms on activation of the
HPA axis in the mother might be driven more predomi-
nantly by the caloric drain of lactation compared with
the appraisal of emotional and threatening situations.
Recent elegant data have demonstrated the critical link
between caloric intake and suppression of the HPA
axis. In these experiments, sucrose ingestion in adre-
nalectomized rats was as efficient as glucocorticoid re-
placement at providing inhibitory feedback on hypo-
thalamic CRF neurons.202 It is, therefore, tempting to
speculate that the increased food intake observed in
middle–late lactating females and the consequent
changes in central hypothalamic pathways that regulate
metabolism203,204 might lead to major inhibition of the
HPA axis that would not necessarily be glucocorticoid
dependent. These hypotheses certainly deserve to be
tested in the near future.

Implications for human studies

Despite the occurrence of numerous stressors in the
early postpartum period (e.g., sleep disturbances,
adaptation to a new baby, successful breast-feeding im-
plementation) and the important consequences that
postpartum stress might have on the infant, there has
been a surprising paucity of studies that have investi-
gated the neuroendocrine responsiveness of postpar-
tum mothers to stress. It is clear that the stress of
labour increases cortisol secretion several times in hu-
mans205 and animals,18 but only 3 studies to date have
measured stress-induced cortisol and autonomic re-
sponses during the postpartum and lactation periods
in humans.22,206,207 In these studies, it was found that
breast-feeding mothers displayed a reduced cortisol
and epinephrine response to the physical stress of run-
ning on a treadmill22 and that the autonomic response
to a psychologic stressor (the Trier Social Stress Test,
[TSST]) was blunted compared with that in bottle-
feeding mothers.206,207 Interestingly, recent studies con-
ducted in mothers at 1 week post partum208 or 7–8 weeks

post partum207 showed that plasma ACTH and cortisol
secretion are reduced by infant suckling compared
with secretion of these hormones before nursing.208

These studies appeared to compare well with the data
reported in the animal literature and support a blunt-
ing effect of suckling on the activity of the HPA axis.
Our interest, derived from results obtained in our ani-
mal studies, was, however, to determine whether
stimulus salience could be the basis of the hyporespon-
siveness to stress observed in breast-feeding postpar-
tum mothers. We thus reasoned that if a psychologic
stressor was relevant to the infant, breast-feeding
mothers should display larger responses compared with
the response seen with an irrelevant stressor. We used 2
psychologic stressors, the TSST as the irrelevant stressor
and viewing of an emotional film suggesting danger to a
young child as a salient stressor. In humans, very few
studies have measured hormonal responses to the latter
experimental protocol. In one study, cortisol and pro-
lactin secretion were significantly enhanced in infertile
women watching a video about infertility,209 and their
anxiety levels increased throughout the film. In another
study, changes in heart rate and blood pressure were
found after exposure to an emotional story.210 The exper-
imental conditions that induced emotional reactivity in
the laboratory share various peripheral characteristics
with real emotions, such as an increase in heart rate,
blood pressure and perspiration.211 Also of interest is the
observation that reactivity to emotional stimuli in hu-
mans has been shown to decrease with exposure and fa-
miliarity.212 For instance, multiparous mothers were
found to be less anxious and depressed than primi-
parous mothers 2 days after delivery.213

The choice of the emotional stressor was also based
on the observation that 20%–60% of new mothers expe-
rience periods of heightened emotionality or lability, or
both, during a postpartum period that can extend over
months.214 However, unlike the situation in rodents in
which hormones are necessary to maintain the changes
of lactation, a host of factors other than hormones con-
tribute to the mother’s mood state post partum.215,216

Although preliminary, our results demonstrate that
postpartum mothers still exhibit reduced cortisol re-
sponses to psychologic stressors compared with moth-
ers who are not in the postpartum period or with
women who are not mothers.217 There was a clear disso-
ciation between ratings of perceived stress and the
magnitude of changes in cortisol secretion in all post-
partum mothers subjected to the emotional stressor. It is
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still too early to determine whether stimulus saliency
affected the cortisol response or whether there was a
significant effect of feeding mode or parity on the neu-
roendocrine and autonomic responses to the 2 stressors.

In conclusion, nurturing mother–infant interactions
are essential for the optimal development of the infant,
and numerous behavioural and physiologic regulatory
processes ensure the reciprocal nature of the interac-
tion. Regulation of responsiveness to stress in both the
mother and infant is essential to achieve adequate be-
havioural interaction and infant care. Many studies
spanning species have demonstrated unequivocally the
deleterious effects of disrupted maternal behaviour
and infant neglect on cognitive functions and suscepti-
bility to developing disease and drug addiction in the
offspring.218 Thus, it appears ecologically sensible that
maternal reactivity to stress is selectively blunted to-
ward irrelevant stress and enhanced toward stressors
that endanger the mother–infant dyad. It is equally
sensible to hypothesize that part of this filtering mech-
anism is maintained by direct sensory stimulation pro-
vided by the infant. Our studies provide some support
for the existence of this “filtering mechanism” in ro-
dents and humans; however, we still have many ques-
tions that remain unexplored. For instance, we do not
know which are the brain structures and the central
pathways that support such a “filtering system.” We
do not know whether the inability to filter stressful
stimuli adequately could at least in part be associated
with the development of postpartum depression and
whether breast-feeding in high-risk populations could
be seen as a protective factor against exaggerated re-
sponses to challenges. We hope that answers will be
provided to many of these questions in the near future.
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