Acute treatment of moderate to severe depression with hypericum extract WS 5570 (St John's wort): randomised controlled double blind non-inferiority trial versus paroxetine

A Szegedi, R Kohnen, A Dienel and M Kieser

BMJ 2005;330:503-; originally published online 11 Feb 2005; doi:10.1136/bmj.38356.655266.82

Updated information and services can be found at: http://bmj.com/cgi/content/full/330/7490/503

These include:

References
This article cites 14 articles, 7 of which can be accessed free at: http://bmj.com/cgi/content/full/330/7490/503#BIBL

8 online articles that cite this article can be accessed at: http://bmj.com/cgi/content/full/330/7490/503#otherarticles

Rapid responses
27 rapid responses have been posted to this article, which you can access for free at: http://bmj.com/cgi/content/full/330/7490/503#responses

You can respond to this article at: http://bmj.com/cgi/eletter-submit/330/7490/503

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top left of the article

Correction
A correction has been published for this article. The contents of the correction have been appended to the original article in this reprint. The correction is available online at: http://bmj.com/cgi/content/full/330/7494/759-a

Notes

To order reprints follow the "Request Permissions" link in the navigation box

To subscribe to BMJ go to: http://resources.bmj.com/bmj/subscribers
Acute treatment of moderate to severe depression with hypericum extract WS 5570 (St John’s wort): randomised controlled double blind non-inferiority trial versus paroxetine

A Szegedi, R Kohnen, A Dienel, M Kieser

Abstract

Objective To investigate the efficacy of hypericum extract WS 5570 (St John’s wort) compared with paroxetine in patients with moderate to severe major depression.

Design Randomised double blind, double dummy, reference controlled, multicentre non-inferiority trial.

Setting 21 psychiatric primary care practices in Germany.

Participants 251 adult outpatients with acute major depression with total score ≥ 22 on the 17 item Hamilton depression scale.

Interventions 900 mg/day hypericum extract WS 5570 three times a day or 20 mg paroxetine once a day for six weeks. In initial non-responders doses were increased to 1800 mg/day hypericum or 40 mg/day paroxetine after two weeks.

Main outcomes Change in score on Hamilton depression scale from baseline to day 42 (primary outcome). Secondary measures were change in scores on Montgomery-Åsberg depression rating scale, clinical global impressions, and Beck depression inventory.

Results The Hamilton depression total score decreased by mean 14.4 (SD 8.8) points, corresponding to 56.6% (SD 34.3%) of the baseline value, in the hypericum group and by 11.4 (SD 8.8) points (44.8% (SD 33.5%) of baseline value) in the paroxetine group (intention to treat analysis; similar results were observed in the per protocol analysis). The intention to treat analysis (lower one sided 97.5% confidence limit 1.5 points for the difference hypericum minus paroxetine) and the per protocol analysis (lower confidence limit 0.7 points) showed non-inferiority of hypericum and statistical superiority over paroxetine. The lower limits in both cases exceeded the pre-specified non-inferiority margin of ~2.5 points and the superiority margin of 0. The incidence of adverse events was 0.035 and 0.060 events per day of exposure for hypericum and paroxetine, respectively.

Conclusions In the treatment of moderate to severe major depression, hypericum extract WS 5570 is at least as effective as paroxetine and is better tolerated.

Introduction

Extract of Hypericum perforatum (St John’s wort) is more effective than placebo in the treatment of mild to moderate major depression and as effective as several tricyclic antidepressants or fluoxetine. In patients with more severe depression, however, the antidepressant efficacy of hypericum extract is disputed. In a comparison of 1800 mg/day hypericum extract (LI 160) and 150 mg/day imipramine the effect of both drugs was comparable during six weeks of acute treatment. That study, however, was not sufficiently powered to demonstrate non-inferiority of the herbal extract.

In clinical practice, hypericum extract is better tolerated than synthetic antidepressants. It may be particularly helpful in severe depression with its high risk of chronicity. We compared the efficacy and safety of hypericum extract with paroxetine in patients with moderate to severe depression.

Hypericum extract WS 5570 at a dose of 300 mg three times a day has been shown to be more effective than placebo in patients with mild to moderate major depression treated for six weeks. Paroxetine, on the other hand, is a potent selective serotonin reuptake inhibitor with proved efficacy in patients with depression of any severity and has a more favourable safety profile than tricyclic antidepressants. In major depression, daily doses between 20 mg and 50 mg have been recommended and are commonly used in clinical trials and in daily practice.

In accordance with Kupfer’s model of acute therapy and subsequent prophylactic treatment of unipolar depression, our study included a six week acute phase after which responders undergo four months of prophylactic continuation treatment (to prevent relapse or recurrence, or both).

Methods

Protocol, design, and objectives

This double blind, double dummy, randomised phase III trial examined the efficacy of hypericum extract WS 5570 compared with paroxetine in the acute treatment of moderate to severe major depression. After a screening examination participants underwent a single blind placebo run-in phase of three to seven days, during which they received three coated tablets of hypericum placebo per day plus one paroxetine placebo capsule in the morning. After that, we randomised those still meeting the selection criteria to six weeks of double blind treatment with hypericum extract or paroxetine. Those who responded to treatment (that is, their total score on the 17 item Hamilton depression scale decreased by ≥ 50%) were invited to participate in a four month double blind maintenance phase (reported elsewhere).

All patients provided written informed consent. We did not use a placebo control group because we considered it unethical to treat severely depressed patients with placebo for six weeks.

Participants

We recruited male and female outpatients in 21 psychiatric primary care centres in Germany. All participants were 18-70 years old and had single or recurrent moderate or severe episodes of...
unipolar major depression without psychotic features (Diagnostic and Statistical Manual of Mental Disorders, fourth edition, (DSM-IV) 296.22, 296.23, 296.32, 296.33) persisting for two weeks to a year. At screening and baseline all participants had to have a total score ≥ 22 points on the 17 item Hamilton depression scale and ≥ 2 points for the item “depressive mood.” The diagnosis of depression was based on the mini-international neuropsychiatric interview. There were no restrictions regarding ethnic group.

We excluded anyone with a decrease in total depression score of ≥ 25% during the run-in, or with a diagnosis of schizophrenia, acute anxiety disorder, adjustment disorder, depressive disorder of any type not stated above, bipolar disorder, organic mental disorder, acute post-traumatic stress disorder, or substance abuse disorder. We also excluded patients with increased risk of suicide (defined by a score ≥ 4 for item 10 of the Montgomery-Åsberg depression rating scale), who had previously attempted suicide, or who had not responded to more than one adequate treatment (equivalent to 150 mg/ day amitriptyline for ≥ 6 weeks) in the present episode. Participants were not allowed to take other psychotherapeutic medication and psychotherapy during the study (in case of previous antidepressant medication an appropriate wash out period of five half lives had to be observed).

Interventions and blinding
We used hypericum extract WS 5570 (Dr Willmar Schwabe Pharmaceuticals, Karlsruhe, Germany), a hydroalcoholic extract from herb hyperici (drug to extract ratio 3:7:1) with standardised contents of 3-6% hyperforin and 0.12-0.28% hypericin. The coated tablets contained 300 mg or 600 mg of the extract. Paroxetine was supplied in tablets of 20 mg packed in capsules containing one or two tablets. High and low dose tablets or capsules were indistinguishable in all aspects of their outward appearance. For each drug an identically matched placebo was available (the success of blinding was evaluated by examining the drugs before distribution).

During the six weeks of randomised treatment patients allocated to hypericum always took three coated tablets of hypericum/day plus one paroxetine placebo capsule in the morning whereas those in the paroxetine group took one capsule of paroxetine in the morning and three coated tablets of hypericum placebo/day. Initially this corresponded to three doses of 300 mg/day hypericum or one dose of 20 mg/day paroxetine. For patients whose total depression score had not decreased by at least 20% after two weeks of treatment compared with baseline we increased the treatment to three doses of 600 mg/day hypericum or one dose of 40 mg/day paroxetine. The doses for paroxetine were based on published recommendations.

Outcomes
We assessed efficacy and safety at screening, baseline, and at the end of the first, second, fourth, and sixth weeks. The primary outcome measure was the absolute decrease of the Hamilton total depression score between baseline and week six. Secondary outcome measures included the Montgomery-Åsberg depression rating scale, the clinical global impressions, and the Beck depression inventory. We based assessments of safety and tolerability on spontaneous reports of adverse events, a semistructured interview exploring known side effects of the investigational treatments, physical examinations, and routine laboratory measurements.

To assure uniform diagnostic and rating standards, all assessments were performed by psychiatrists and psychologists who had participated in training before patients were included.
Results

Participants

Between May 2000 and July 2003, we assessed 301 white patients and randomised and treated 251 (125 to hypericum and 126 to paroxetine). Figure 1 shows reasons for non-randomisation, premature termination, or exclusion. We did not exclude any patients because we thought they were at increased risk of suicide. Among the patients who were not randomised, two were withdrawn because they responded to placebo during the run-in period. All decisions regarding patient eligibility were made before code breaking.

Baseline demographic and clinical measures were comparable in both groups (table 1). Mean age and average duration of the current episode, however, were higher in the hypericum group. The baseline total depression scores ranged from 22 (minimum required) to 34 in both groups. In each group more than half of the patients had a total score ≥25 and were thus severely depressed.

Investigational treatment

After two weeks of randomised treatment, 69/122 patients in the hypericum group (57%) and 58/122 in the paroxetine group (48%) were switched to the higher doses. We assessed compliance with treatment by counting tablets; it was 96% (SD 7%) for hypericum and 98% (SD 10%) for paroxetine.

Figure 2 shows the total Hamilton depression scores over time. Between baseline and day 42 scores decreased by an average of 14.4 (SD 8.8) points (corresponding to 57% (SD 34%) of the baseline value) for hypericum and by 11.4 (SD 8.6) points (45% (SD 34%)) for paroxetine (lower one sided repeated 97.5%}

Table 1 Demographic and clinical characteristics at baseline (intention to treat analysis; figures are means (SD); medians unless stated otherwise)

<table>
<thead>
<tr>
<th></th>
<th>Hypericum (n=122)</th>
<th>Paroxetine (n=122)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No (% of women</td>
<td>85 (70)</td>
<td>83 (68)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>49.0 (11.0); 51.5</td>
<td>45.5 (11.5); 48.0</td>
</tr>
<tr>
<td>No (% with recurrent depression</td>
<td>50 (41)</td>
<td>49 (40)</td>
</tr>
<tr>
<td>Duration of current episode (days)</td>
<td>160 (109); 148</td>
<td>127 (81); 106</td>
</tr>
<tr>
<td>HAMD total score*</td>
<td>25.5 (2.7); 25.0</td>
<td>25.5 (2.9); 25.0</td>
</tr>
<tr>
<td>No (% with HAMD total score ≥25</td>
<td>69 (57)</td>
<td>67 (55)</td>
</tr>
<tr>
<td>MADRS total score†</td>
<td>29.9 (5.0); 29.0</td>
<td>29.4 (4.9); 29.0</td>
</tr>
<tr>
<td>Beck depression inventory‡</td>
<td>26.3 (8.5); 26.0</td>
<td>25.6 (8.0); 24.5</td>
</tr>
<tr>
<td>No (% marked or severely ill)</td>
<td>87 (71)</td>
<td>84 (69)</td>
</tr>
</tbody>
</table>

HAMD=Hamilton depression scale; MADRS=Montgomery-Åsberg depression rating scale.
*Theoretical range 0–52.
†Theoretical range 0–60.
‡Theoretical range 0–63; 119 in hypericum group, 120 in paroxetine group.
§According to clinical global impressions score.
confidence limit adjusted for the interim analysisa for the difference hypericum–paroxetine was 1.5 points). In the per protocol analysis the decreases in scores during treatment were 14.6 (SD 9.0) points for hypericum and 12.0 (SD 8.5) points for paroxetine (lower confidence limit 0.7 points). Hence, the lower confidence limits not only exceeded the non-inferiority margin of −2.5 points but also the value 0, showing that hypericum is statistically superior to paroxetine at the one sided 2.5% level.

According to mean change in depression score from baseline, hypericum was descriptively superior to paroxetine in 11 of those 13 centres that had two or more patients in each group. At the end of the acute treatment phase 86/122 patients (71\%) in the hypericum group and 73/122 (60\%) in the paroxetine group responded to treatment (P = 0.08; \(\chi^2 \) test), and 61/122 (50\%) and 45/122 patients (35\%) showed remission (P = 0.02).

A subgroup analysis showed that patients who were switched to 1800 mg/day hypericum or 40 mg/day paroxetine because of lack of efficacy during the first two weeks of randomised treatment showed marked decreases in total depression score during weeks three to six. By the end of the double blind treatment period (day 42) we observed a substantial amelioration of symptoms compared with baseline in patients with or without an increase in drug dose in both treatment groups (mean (SD) decrease in total score from baseline to day 42: hypericum 900 mg/day 16.6 (7.5) points, hypericum 1800 mg/day 12.6 (9.3) points, paroxetine 20 mg/day 11.0 (8.9) points, paroxetine 40 mg/day 11.8 (8.1) points).

Table 2 shows the main results for selected secondary measures. For all standardised psychiatric scales we found differences between treatment groups in favour of hypericum, confirming our previous results.

Safety and tolerability

During the acute treatment phase 69/125 patients randomised to hypericum (55\%) reported 172 adverse events and 96/126 treated with paroxetine (76\%) reported 269 adverse events. The incidences were 0.053 adverse events per day of exposure (0.029 at 900 mg/day and 0.059 at 1800 mg/day) for hypericum and 0.060 (0.062 at 20 mg/day and 0.059 at 40 mg/day) for paroxetine. Based on the rate ratio, the incidence of adverse events in the paroxetine group was 1.72 (95\% confidence intervala 1.42 to 2.10) of the rate observed for hypericum. The highest incidence was found for gastrointestinal disorders (59 events in 42 patients in the hypericum group and 106 events in 67 patients in the paroxetine group), followed by nervous system disorders (55 events

Table 2 Secondary measures (intention to treat analysis; figures are numbers (percentages) unless stated otherwise)

<table>
<thead>
<tr>
<th>Score</th>
<th>Days of treatment</th>
<th>Hypericum (n=125)</th>
<th>Paroxetine (n=122)</th>
<th>Difference (hypericum minus paroxetine) (95% CI), P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>change from baseline to day 42:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAI (mean (SD); median)†</td>
<td>16.4 (10.7); 17.0</td>
<td>12.6 (10.6); 14.0</td>
<td>3.8 (1.1 to 6.5), 0.01*</td>
<td></td>
</tr>
<tr>
<td>BDI (mean (SD); median)‡</td>
<td>10.2 (10.3); 9.0</td>
<td>7.0 (9.3); 5.5</td>
<td>3.2 (0.7 to 5.7), 0.01*</td>
<td></td>
</tr>
<tr>
<td>scores by day 42:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global efficacy self rating very good or good</td>
<td>65 (53)</td>
<td>55 (45)</td>
<td>8 (4 to 21), 0.20‡</td>
<td></td>
</tr>
</tbody>
</table>

MAI=Montgomery-Åsberg depression rating scale; BDI=Beck depression inventory.

* \(t \) test for difference (calculated for pooled data from both study stages).

†119 in hypericum group, 120 in paroxetine group.

‡\(\chi^2 \) test for difference (calculated for pooled data from both study stages).

Discussion

Principal findings

We have shown that hypericum extract WS 5570 is at least as effective as paroxetine over six weeks of acute treatment in outpatients with moderate or severe unipolar major depression. This finding was stable across several validated investigator and self rating scales and across the participating centres as well as in different analysis datasets (including or excluding patients with major protocol violations). The average advantage of 3 points for the decrease in total Hamilton depression score from baseline underlines the clinical relevance of the observed effect,a as do the responder rates of 70\% v 60\% and the remission rates of 50\% v 35\% for hypericum and paroxetine, respectively. The results thus indicate that in a group of patients in whom the appropriateness of hypericum was previously disputed, the antidepressant efficacy of the herbal drug is at least comparable with the effect of one of the leading synthetic antidepressants. In

Table 3 Adverse events that occurred in at least 10 patients in one group (safety analysis set; figures are numbers (percentages) of patients)

<table>
<thead>
<tr>
<th>Event</th>
<th>Hypericum (n=125)</th>
<th>Paroxetine (n=126)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper abdominal pain</td>
<td>12 (9.6)</td>
<td>9 (7.1)</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>12 (9.6)</td>
<td>23 (18.3)</td>
</tr>
<tr>
<td>Dry mouth</td>
<td>16 (12.8)</td>
<td>35 (27.8)</td>
</tr>
<tr>
<td>Nausea</td>
<td>9 (7.2)</td>
<td>21 (16.7)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>14 (11.2)</td>
<td>16 (12.7)</td>
</tr>
<tr>
<td>Dizziness</td>
<td>9 (7.2)</td>
<td>24 (19.1)</td>
</tr>
<tr>
<td>Headache</td>
<td>13 (10.4)</td>
<td>14 (11.1)</td>
</tr>
<tr>
<td>Sleep disorder</td>
<td>5 (4.0)</td>
<td>10 (7.9)</td>
</tr>
<tr>
<td>Increased sweating</td>
<td>9 (7.2)</td>
<td>13 (10.3)</td>
</tr>
</tbody>
</table>
patients with insufficient response to the initial (lower) dose an increase in dose after two weeks was beneficial.

It is important to note that for both drugs the higher dose was not associated with a relevant increase in adverse events. In particular, none of the patients exposed to hypericum 1800 mg/day for four weeks reported any photosensitivity reactions that have previously been reported.25

Strengths and weaknesses

These results contribute to the assessment of the antidepressant effect of hypericum extract in moderately and severely depressed patients in whom only limited evidence exists. Non-inferiority trials of hypericum extract against synthetic antidepressants have been criticised for using doses mostly in the lower therapeutic range of the active comparators.26 This criticism does not apply to our trial, which included a mandatory dose increase in patients with insufficient response after two weeks of treatment. For paroxetine, 40 mg/day correspond to the established use of the drug in clinical trials and daily practice.27 The trial’s assay sensitivity is supported by the observed treatment effect for paroxetine which was in line with previously published data from trials against placebo and synthetic antidepressants.28 Another indicator of a pharmacological effect is that in both study groups a (single blind) dose increase in initial non-responders was followed by a substantial decrease in depression score that was comparable with the effect observed in those patients who were adequately treated with the initial (lower) dose. A placebo control could not be used in this group of predominantly severely depressed patients for ethical reasons, particularly as comedication with benzodiazepines was not permitted. For the same reason we had to refrain from including patients at high risk of suicide. As we did not actually withdraw any patient because of increased risk of suicide, however, this restriction does not adversely affect the external validity of our data.

Implications for clinicians

Our results support the use of hypericum extract WS 5570 as an alternative to standard antidepressants in moderate to severe depression, especially as it is well tolerated.29 As in any effective antidepressant, potential interactions with other drugs deserve clinical attention.28

The convincing results for hypericum extract WS 5570 observed in this trial deserve independent confirmation by other research. We are assessing efficacy in long term treatment, for which the drug can be an interesting option because of its favourable ratio of efficacy and tolerability, in the ongoing continuation phase.

We thank the investigators and patients, St Clement for project management, T Konstantinowicz for the data analysis, T Utz for project assistance, and A Volp for help with the manuscript.

Contributors: AS and RK conceived the study. AD conceived the study, and participated in its design and coordination. MK participated in the design of the study and was responsible for the analysis. All authors read and approved the final manuscript. AD and MK are guarantors.

Funding: Dr Willmar Schwabe Pharmaceuticals, manufacturer of WS 5570. Competing interests: AS has received consultancy fees from Dr Willmar Schwabe Pharmaceuticals. RK is head of a contract research organisation (IMEREM), which is engaged in several clinical trials of hypericum extract for different pharmaceutical companies. AD and MK are employees of Dr Willmar Schwabe Pharmaceuticals.

Ethical approval: The protocol was approved by the participating centres’ appropriate independent ethics committees.

5 Wheatley D. LI 169, an extract of St John’s wort, versus amitriptyline in moderately to severely depressed outpatienta—a controlled 6-week clinical trial. Pharmacopsychiatry 1997;30(suppl 2):77-80.

(Accepted 17 December 2004)

doi 10.1136/bmj.38356.655266.82

Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Department of Psychiatry and Psychotherapy, Eschenallee 3, 14050 Berlin, Germany

A Szegedi managing senior physician

Institute for Medical Research Management and Biometrics GmbH, Scheurerstraße 21, 90478 Nürnberg, Germany

R Kohrens head of scientific affairs

Dr Willmar Schwabe Pharmaceuticals, PO Box 410925, 76209 Karlsruhe, Germany

A Dienel head of clinical trials department

M Kieser head of biometry department

Correspondence to: M Kieser meinhard.kieser@schwabe.de

Papers
Commentary: Open access publishing: too much oxygen?

Jeffrey K Aronson

“We hold these truths to be self-evident . . .” This assertion of the US founding fathers betokened their zeal for human equality and rights. But such an attitude can betoken intellectual arrogance. It was, for example, self-evident to paediatricians in the 1950s that it would be beneficial to give premature babies 100% oxygen without proper trial. But 100% oxygen caused blindness, and the balance of benefit to harm was unfavourable.

In their survey of the attitudes of a small sample of scientists to open access1 Schroter and colleagues don’t actually trumpet its self-evident benefits, but their call for evidence refers to the author pays model, not open access publishing itself, although open access will not be possible without an author pays scheme or something comparable. But scientists’ opinions should not frame policy without supporting evidence. We need to ask whether immediate free access to readers, with whatever method of payment is used, would benefit science (not the scientists or the grant giving bodies) in the digital environment; what do authors want? Findings of an international survey of author opinions: project report. London: Centre for Information Behaviour and Evaluation of Research, Department of Information Science, City University, 2004. http://ciber.soci.city.ac.uk/ciber-pa-report.pdf (accessed 7 July 2004).

Corrections and clarifications

Acute treatment of moderate to severe depression with hypericum extract WS 5570 (St John’s wort): randomised controlled double blind non-inferiority trial versus paroxetine

An editing error may have caused confusion in the abstract of this paper by A Szegedi and colleagues (BMJ 2005;330:563-6, 5 Mar). The initial daily dose of hypericum WS 5570 was 900 mg split into three doses of 300 mg—that is, 300 mg three times a day.

NICE proposes to withdraw Alzheimer’s drug from NHS

In this News article by Zosia Kmietowicz we mistakenly referred to donepezil, rivastigmine, and galantamine as anticholinesterase inhibitors (BMJ 2005;330:495, 5 Mar). They are not; they are acetylcholinesterase inhibitors.

Children may die when left in overheated cars

In this item in the “BMJ family highlights” section by Harvey Marcovitch, we wrongly said: “A few children were deliberately restrained in a safety belt so that adults could sleep, work, use drugs, or gamble” (BMJ 2005;330:564, 12 Mar). In fact, according to the original study, the children were restrained in a safety seat, not a belt.

Competing interests: JKA is a fellow of the British Pharmacological Society and chairman of the editorial board of the British Journal of Clinical Pharmacology, which is published on the society’s behalf by Blackwell Publishing, as a subscription journal with free access after 12 months; the complete archives of the journal are about to be digitised for free access.

2 Delamothe T, Smith R. Open access publishing takes off. The dream is now achievable. BMJ 2004;328:1190-3.

5 Smith R. Think harm always [editor’s choice]. BMJ 2004;329. (3 July)