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SYMPOS IUM REPORT

No stress please! Mechanisms of stress
hyporesponsiveness of the maternal brain

David A. Slattery and Inga D. Neumann

Department of Behavioural & Molecular Neuroendocrinology, Institute of Zoology, University of Regensburg, Germany

The time around birth is accompanied by behavioural and physiological adaptations of the

maternal brain, which ensure reproductive functions, maternal care and the survival of the

offspring. In addition, profound neuroendocrine and neurobiological adaptations have been

described with respect to behavioural and neuroendocrine stress responsiveness in rodents and

human mothers. Thus, the hormonal response of the hypothalamo-pituitary-adrenal (HPA)

axis and the response of the sympathetic nervous system to emotional and physical stressors

are severely attenuated. Moreover, anxiety-related behaviour and emotional responsiveness to

stressful stimuli are reduced with the result of general calmness. These complex adaptations of

the maternal brain are likely to be a consequence of an increased activity of brain systems with

inhibitory effects on the HPA axis (such as the oxytocin and prolactin systems) and of a reduced

activity of excitatory pathways (noradrenaline (norepinephrine), corticotrophin-releasing factor

and opioids). Experimental manipulation of these systems using complementary approaches

indeed demonstrates their importance in these maternal brain adaptations. Maternal stress

adaptations are not only important for the healthy prenatal development of the offspring

by preventing excessive glucocorticoid responses and in the promotion of postnatal maternal

behaviour, but are also vital for the well-being of the mother and her mental health.
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Introduction

Across all mammalian species, both physiological and
behavioural changes occur throughout pregnancy in order
to prepare the mother for the birth. These changes
include the onset of maternal behaviours (i.e. maternal
aggression, milk production and let-down and nursing
of offspring) (Rosenblatt et al. 1994; Neumann et al.
2001) to ensure the development and survival of the
offspring. Moreover, profound alterations have been
shown in pregnancy and lactation with respect to maternal
stress-coping style with severely attenuated activity of
the hypothalamo-pituitary-adrenal (HPA) axis (Stern
et al. 1973; Neumann et al. 1998b; Russell et al. 1999;
Lightman et al. 2001; Kammerer et al. 2002; de Weerth
& Buitelaar, 2005). Such changes seem to be essential for
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the healthy development of the offspring; for example, to
prevent excessive circulating stress hormone levels.
Moreover, there is a growing body of evidence to suggest
that these altered stress responses are also important for
maternal mental health.

In the following review, we focus on the physiological,
behavioural and molecular adaptations underlying the
stress hypo-responsiveness, with particular emphasis on
the brain oxytocin (OXT) and prolactin (PRL) systems.

Animal research

The end of pregnancy and the onset of lactation
is accompanied by the activation of neurobiological
systems that are directly related to reproductive
functions (i.e. maternal behaviour and nurturing of
the newborn). Specifically, the neuropeptide OXT is
increasingly synthesized in hypothalamic supraoptic
nucleus/paraventricular nucleus (SON/PVN) neurons
and secreted into the blood to promote labour during
parturition and to release milk (e.g. in response to
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suckling). Another neuropeptide, PRL is not only
up-regulated in lactotrophs to ensure lactogenesis, but
also in the hypothalamus and is similarly involved
in the regulation of maternal behaviour. In addition,
during lactation a chronic elevation in plasma cortico-
sterone has been described under basal conditions (see
Table 1) (Stern et al. 1973; Walker et al. 1995; Windle
et al. 1997b) accompanied by alterations of the diurnal
pattern of activity (for review see Lightman et al. 2001).
Increased vasopressin expression in parvocellular PVN
neurons (Walker et al. 2001), accompanied by an enhanced
sensitivity of the PVN to vasopressin (Toufexis et al.
1999b), may contribute to the altered basal activity of
the HPA axis during lactation. Of importance, despite the
elevated basal activity of the HPA axis, it has been shown in
various mammalian species that the responsiveness of the
HPA axis to a broad variety of psychological and physio-
logical stressors is severely attenuated from mid-pregnancy
through to the end of lactation (Stern et al. 1973; Walker
et al. 1995; Windle et al. 1997b; Neumann et al. 1998b;
Shanks et al. 1999; Johnstone et al. 2000; Lightman
et al. 2001; Neumann, 2001; Brunton & Russell, 2003).
In agreement, the expression of corticotrophin-releasing
factor (CRF) within the PVN is reduced both in pregnancy,
which might be related to elevated glucocorticoid levels
and negative feedback effects (Douglas & Russell, 1994;
Johnstone et al. 2000; da Costa et al. 2001), and during
lactation (Lightman et al. 2001; Walker et al. 2001).
Moreover, the pituitary sensitivity to CRF is reduced due
to reduced CRF receptor binding at pituitary cortico-
trophs (Neumann et al. 1998a). The lactation-associated
reduction in CRF expression has also been described in
the central nucleus of the amygdala, a region important
not only for HPA axis regulation, but also for emotionality
(Davis & Whalen, 2001). A potential mechanism under-
lying the attenuated CRF system is via the immediate-early
gene nur77 (Nerve Growth Factor-induced B (NGFI-B)),
which controls CRF gene expression and is up-regulated
after emotional stress (Kirschbaum et al. 1999), but to
a lesser extent in the hypothalamus of pregnant mice
(Douglas et al. 2003). As the brain CRF system is the main
stimulator of the HPA axis, lowered activity of the system
may contribute to the attenuated corticotrophin (ACTH)
and corticosterone responses observed during pregnancy
and lactation. Thus, reduced (re)activity of the brain
CRF system may also be related to behavioural changes
of the dam including reduced anxiety (Hard & Hansen,
1985; Windle et al. 1997b; Toufexis et al. 1998; Neumann,
2003), but also enhanced maternal behaviour (Pedersen
et al. 1991) and maternal aggression when protecting the
offspring (Gammie et al. 2004).

There is also a loss of excitatory inputs of the HPA
axis in pregnancy, including a reduced noradrenergic
excitatory tone within the hypothalamic PVN (Toufexis
et al. 1998; Douglas et al. 2005), which contributes to its

attenuated responsiveness during lactation. Further, there
is a lower expression of noradrenergic α1A-adrenoceptors
in the parvo- and magnocellular PVN of pregnant rats
(Douglas et al. 2005). These alterations could contribute to
the loss of hypothalamic noradrenergic excitation and the
low level of CRF gene expression within the hypothalamus
found under resting conditions. Another excitatory input
to the HPA axis that is attenuated in pregnancy is that
of endogenous opioids (Douglas et al. 1998; Kammerer
et al. 2002; Kofman, 2002). The effects of endogenous
opioids are reversed during parturition, when opioids
appear to inhibit, rather than stimulate, HPA axis activity
(Wigger et al. 1999). Further, endogenous opioid actions
on OXT neurons within the hypothalamic PVN differ
between virgin and pregnant rats (see Fig. 1) (Douglas
et al. 1995; Wigger & Neumann, 2002). As brain OXT is an
important regulator of the activity of the HPA axis (Windle
et al. 1997a; Neumann et al. 2000a; Neumann, 2003), the
inhibitory effects of endogenous opioids on intra-PVN
release of OXT in virgins and the excitatory effects of endo-
genous opioids in pregnant rats are of interest in the
context of mechanisms regulating stress adaptations peri-
partum (Wigger & Neumann, 2002).

Involvement of brain OXT and PRL in decreased stress
responsiveness

Both OXT and PRL have important reproductive
functions including promotion of labour and milk
ejection and lactogenesis, respectively, when released
from the neurohypophysis (OXT) or adenohypophysis
(PRL) into the blood. Furthermore, as potential neuro-
modulators/neurotransmitters, they are synthesized and
released within the brain, and significant effects on
maternal behaviour (among others) have been established
(Pedersen & Prange, 1979; Neumann & Landgraf, 1989;
Neumann et al. 1993b, 1994a,b; Bridges et al. 2001; Torner
et al. 2002).

OXT. Despite a general activation of the OXT system
around birth in direct relation to reproductive functions
(Pedersen & Prange, 1979; Insel, 1986; van Leengoed et al.
1987; Neumann & Landgraf, 1989; Landgraf et al. 1991;
Neumann et al. 1993a, b; Insel et al. 1997), responses
of the OXT system to stimuli not directly related to
parturition or lactation were found to be lower both in
pregnancy and lactation (Lightman & Young, 1989; Walker
et al. 1995; Neumann et al. 1995, 1998a, 2001; Douglas
et al. 1998). OXT neurons generally respond to emotional,
physical or pharmacological stressors with elevated neuro-
hypophysial release into the blood (Neumann et al. 1993a,
1995, 1998a; Douglas et al. 1998; Wotjak et al. 1998;
Neumann, 2002; Landgraf & Neumann, 2004) and release
within the hypothalamus (Wigger & Neumann, 2002;
Bosch et al. 2004), and the amygdala (Bosch et al. 2004,
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2005) in male and female rats (Nishioka et al. 1998;
Wotjak et al. 1998; Neumann, 2002; Landgraf & Neumann,
2004; Ebner et al. 2005). Recently, we have extended
previous findings (Windle et al. 1997a) and demonstrated
that endogenous brain OXT regulates the activity of the
HPA axis both in virgin female and male rats. Thus,
central infusion of a selective OXT receptor antagonist
dis-inhibited the release of ACTH and corticosterone
under basal and stress-induced conditions (Neumann et al.
2000b,c). Effects of OXT were found to depend on the
brain region (PVN, amygdala or medio-lateral septum)
and experimental conditions (basal versus stress) studied
(Neumann et al. 2000a; Neumann, 2001). How can these
effects of brain OXT on HPA axis responses be related
to the peripartum period? Chronic infusion of OXT into
the brains of virgin rats attenuated neuronal and neuro-
endocrine responses to stress (Windle et al. 2004) making
an involvement of endogenous OXT on HPA axis responses
during the peripartum period probable. However, our own
experimental evidence indicates that blockade of brain
OXT receptor actions in pregnant or lactating rats does
not result in a dis-inhibition of the HPA axis in response
to various stressors (novel environment, swimming or
maternal defence) as found in virgins (Neumann et al.
2000b,c). Similarly, during parturition, when the brain
OXT system is highly activated (Neumann et al. 1993b),

Figure 1. Schematic representation of some of the neuroendocrine alterations that occur between virgin
and lactating dams
Virgins are characterized by having higher levels of opioid and noradrenergic (NA) inputs to the PVN than in lactating
animals but lower expression of oxytocin (OXT) and prolactin (PRL). Whereas opioids have no apparent influence
on OXT in virgin animals, they have been shown to increase OXT in the PVN during lactation. Furthermore,
the effect of endogenous opioids on CRF release is attenuated during lactation. The combined effect of these
alterations is an enhanced corticotrophin-releasing factor (CRF) release in response to stress in virgins, which leads
to the release of corticotrophin (ACTH) and increased anxiety- and depression-related behaviour in comparison
to lactating animals. By contrast, the low OXT and PRL levels, as well as elevated the CRF level, leads to lower
levels of maternal behaviour in virgins compared with lactating animals. Thus disruption of these factors may
contribute to postpartum depression, which is associated with increased anxiety and depression, as well as reduced
maternal care. Black and thick arrows represent the predominant pathways in virgins and lactating animals while
the grey and thin arrows show the systems that are at low levels (i.e. OXT and PRL in virgins) or attenuated
(i.e. opioid and NA in lactation). Blocked lines represent factors which are inhibitory; factors with thick and black
lines again represent the predominant systems in virgins or lactating animals compared with one another.

the non-responsiveness of the HPA axis to repeated air puff
applied in the home cage in rats or to novel environment
in mice (Douglas et al. 2003) is not due to a significant
inhibition by OXT at this time. Therefore, it is likely that
other additional inhibitory factors, among them endo-
genous opioids and PRL, act in concert with OXT to
attenuate HPA axis hormonal responses in the peripartum
period (see Fig. 1).

PRL. There is an increase in plasma PRL levels seen
at the end of pregnancy (Grattan, 2001), as well as
an up-regulation of PRL and PRL receptor expression
within the hypothalamus in the peripartum period (Pi &
Grattan, 1999). Furthermore, our studies have revealed
an increased neuronal PRL synthesis within the hypo-
thalamus in late pregnancy and lactation (Torner et al.
2004). The relevance of this centrally synthesized PRL
is provided by the fact that PRL is locally released from
neurons within selected hypothalamic regions, including
the PVN, in lactating rats in response to suckling (Torner
et al. 2004). The detailed function of such centrally released
PRL in the context of suckling remains to be elucidated.
However, in the context of altered stress responsiveness
peripartum, it is of interest to note that acute or chronic
intracerebroventricular (i.c.v.) administration of PRL to
virgin female rats results in attenuated stress-induced
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Table 1. Examples of neuroendocrine and behavioural alterations observed in pregnancy and lactation

Behavioural alterations References

HPA axis alterations
Chronic basal hypercorticalism and altered diurnal pattern (Stern et al. 1973; Walker et al. 1995; Windle et al. 1997b;

Lightman et al. 2001)
Decreased responsiveness of HPA axis (ACTH, corticosterone)

to psychological and physiological stressors
(Stern et al. 1973; Windle et al. 1997b; Neumann et al. 1998a;

Shanks et al. 1999; Lightman et al. 2001; Neumann et al.
2001; Walker et al. 2001; Brunton & Russell, 2003)

Decreased stressor perception and stress-induced expression
of c-fos in limbic brain regions

(da Costa et al. 1996)

Alterations in excitatory pathways
Decreased noradrenergic excitatory tone in the PVN (Toufexis et al. 1998; Douglas, 2005)
Reduced excitatory opioid tone on CRF neurons (Douglas et al. 1998)
Attenuated pituitary sensitivity to CRF (Neumann et al. 1998a; Toufexis et al. 1999a)
Decreased sympathetic responsiveness to stressors (Douglas et al. 2005)

Alterations in inhibitory pathways
Elevated OXT system activity (Insel, 1990; Douglas & Russell, 1994)
Increased prolactin synthesis and binding (Pi & Grattan, 1999; Torner et al. 2002)
Decreased CRF mRNA expression in the PVN (Johnstone et al. 2000; Lightman et al. 2001; Walker et al. 2001)

Alterations in behaviour
Increased maternal behaviour including aggressive

behaviour
(Rosenblatt et al. 1994; Neumann et al. 2001)

Increased calmness, reduced anxiety and reduced emotional
responsiveness to stressors

(Carter et al. 2001; Heinrichs et al. 2001; Glynn et al. 2004)

secretion of ACTH and corticosterone accompanied by
an elevated basal plasma level of ACTH (Torner et al.
2001; Donner et al. 2007). Furthermore, chronic PRL
administration has also been demonstrated to attenuate
neuronal (hypothalamic fos mRNA and CRF mRNA)
responses to restraint stress (Donner et al. 2007). Thus,
the lactation-like neuroendocrine state induced by i.c.v.

application of PRL indicates a strong involvement of
high PRL expression within the maternal brain in altered
stress-coping style and stress attenuation. In support
of this, use of antisense oligodeoxynucleotides directed
against the long form of PRL receptors in the brain resulted
in a significant dis-inhibition of stress-induced ACTH
secretion in lactating rats, demonstrating that brain PRL
is a central factor inhibiting the HPA axis response in
lactation (Torner et al. 2001).

Alteration of behavioural stress responses
peripartum: involvement of OXT and PRL

The reduced emotional responsiveness observed during
lactation can be explained, at least in part, by an enhanced
activity of the brain OXT and PRL systems as both have
anxiolytic properties, especially peripartum (Neumann
et al. 2000b; Torner et al. 2002). The anxiolytic effect
of OXT could be localized within the central amygdala
via local infusion (Bale et al. 2001) as also shown by
reverse microdialysis studies (Neumann, 2001); however,
further regions, including the PVN, may be involved.

Further, OXT released within the PVN and the central
amygdala is correlated with the level of maternal aggressive
behaviour displayed by the lactating dam, and such locally
released OXT promotes maternal aggression (Bosch et al.
2005). It is interesting that in virgin female and male
rats and male mice (Ring et al. 2006), administration of
synthetic OXT directly into the hypothalamic PVN (i.c.v.
in male mice) results in reduced anxiety levels, both on
the elevated plus-maze and the light–dark box, an effect
which we could block with an inhibitor of the extra cellular
regulated kinase (ERK) signalling cascade (Neumann et al.
2007). Furthermore, a chronic elevation of brain OXT
concentrations in virgin rats was directly related to an
attenuation of the emotional response to an acute noise
stress (Windle et al. 1997a, 2004). Therefore, in addition
to their main roles in promoting maternal behaviour
(Pedersen & Prange, 1979; Insel, 1990; Neumann et al.
1994a,b; Torner et al. 2004), the emerging evidence clearly
demonstrates that the high levels of brain OXT and PRL
(Insel, 1990; Douglas & Russell, 1994; Mann & Bridges,
2002; Torner et al. 2004) also play a crucial role in the
dampened emotional responsiveness observed in the peri-
partum period.

Human research. In humans, progressively increasing
levels of placental CRF and gradually decreasing levels
of CRF-binding protein (Magiakou et al. 1996a,b) may
contribute to the elevated basal activity of the HPA axis
at the end of pregnancy. Additionally, attenuation of the
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responsiveness of the HPA axis, and other relevant systems,
to physiological or psychological stressors has been found
both in pregnant and lactating women (Nisell et al. 1985;
Schulte et al. 1990; Altemus et al. 1995; Kammerer et al.
2002; for review see de Weerth & Buitelaar, 2005). For
example, the pituitary responses to an i.v. bolus of CRF
were found to be attenuated in lactating women (Magiakou
et al. 1996a). Further, and in line with animal studies, in
late human pregnancy and lactation, increased calmness,
a more positive mood state and a reduced emotional
response to stressful life events have been described (Carter
et al. 2001; Heinrichs et al. 2001; Glynn et al. 2004).
These changes are likely to be due to a reduced activity
of the brain CRF system, among others. Of importance,
suckling-related factors, possibly including the activation
of the brain OXT and PRL systems, were recently shown
to contribute to the reduced HPA axis response to stress
and to the positive mood state (Heinrichs et al. 2001).
Thus, the experimental evidence accumulated to date in
humans is largely in agreement with the findings from
animal research. Thus, brain CRF, OXT and PRL are
likely to play a significant role in altered emotionality in
humans in the peripartum period. Therefore, disruption
of these systems may be a risk factor for the development of
postpartum mood disorders.

Significance of the adaptations of the maternal stress
responsiveness peripartum

The maternal adaptations described above, with the
significant attenuation of hormonal stress responses in
pregnancy and lactation, are important for the healthy
prenatal development of the offspring by preventing
excessive levels of circulating glucocorticoids (Altemus
et al. 1995; McCormick et al. 1995; Vallee et al. 1997;
Weinstock, 2001). For example, it has recently been
demonstrated that lactating dams whose mothers were
exposed to stressful stimuli during pregnancy do not
display the normal adaptations observed in pregnancy
(Bosch et al. 2007). In more detail, these dams had elevated
CRF and vasopressin mRNA expression within the PVN
suggesting a dysregulation of the stress circuitries, which
in turn leads to the elevated HPA axis reactivity found in
these rats (Bosch et al. 2007).

Therefore, we hypothesize that the attenuation of the
stress responsiveness around birth is also vital for the
well-being of the mother and her mental health. Thus,
in humans, the postpartum period is a time of increased
vulnerability to mood disorders (O’Hara & Swain, 1996;
Llewellyn et al. 1997; Pedersen, 1999; Mastorakos & Ilias,
2000), which can last up to a year and significantly affect
the development of the newborn and the family unit.
Prior history of depressive disorders, lack of social support
and stressful life events, particularly during pregnancy,
increase the risk of perinatal mood disorders (O’Hara

& Swain, 1996; Pedersen, 1999). However, to date, the
underlying mechanisms of postpartum mood disorders
are largely unknown, but it is likely that disruption of the
mechanisms leading to reduced stress-hyporesponsiveness
during lactation plays a significant role.

In general, it is well accepted that CRF is a
relevant neuropeptide involved in the pathogenesis of
psychopathologies, including depression- and anxiety-
related disorders, as a hyperactive state of the HPA axis has
been found in patients with major depression (Nemeroff,
1996; Mitchell, 1998; Arborelius et al. 1999; Wong &
Licinio, 2001; Bakshi et al. 2002; Heinrichs & Koob, 2004).
Accordingly, the reduced activity of the brain CRF system
may represent a protective mechanism of the maternal
brain to cope with the dramatic alteration in various
hormonal systems, in particular gonadal steroids, around
birth. Because gonadal steroids are important regulators
of the HPA axis and the CRF system (Kirschbaum et al.
1999; Young et al. 2001), the large shifts in hormone
levels that occur peripartum may particularly contribute
to the relapse of major depression in women with a
history of psychopathologies. Thus, general suppression
of the activity of the HPA axis during lactation was
hypothesized to prevent the development of depression
in vulnerable women (Carter et al. 2001). In support
of our hypothesis of dampened CRF acitivity being
important for the well-being of the mother, elevated CSF
concentrations of CRF were found in rhesus macaque
females that abused their infants. These females also
rated higher in their level of anxiety and aggression
(Maestripieri et al. 2005). According to another hypothesis,
the central suppression of hypothalamic CRF causes the
increased vulnerability to affective disorders postpartum
(Magiakou et al. 1996a; Mastorakos & Ilias, 2000) as a
more pronounced attenuation of the ACTH response to
a CRF bolus was found in women with postpartum blues
compared with euthymic women.

Other factors possibly involved in these mood disorders
include brain vasopressin and OXT, which exert opposite
effects on anxiety-like behaviour and contribute to
the regulation of HPA axis responses (Landgraf et al.
1995; Purba et al. 1996; for review see (Landgraf &
Neumann, 2004). Also, relationships between PRL and
mood state, including depression and anxiety, have been
found with high circulating PRL levels in breastfeeding
women associated with hypo-anxiety (Asher et al. 1995)
and lower levels with the occurrence of depression
(Abou-Saleh et al. 1998). Furthermore, according to the
monoamine hypothesis, depression results from under-
activity of noradrenaline and serotonin systems, and
accepted treatment is generally with their respective
reuptake inhibitors (Ressler & Nemeroff, 1999; Wong &
Licinio, 2001). However, whether these factors are also
dysregulated in postpartum mood disorders is presently
unknown.
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Conclusions

The findings from animal and human studies in
late pregnancy and lactation, reveal profound physio-
logical adaptations of neuroendocrine and behavioural
stress responses occurring at various brain levels. The
adaptations ensure the healthy development of the
offspring by preventing excess prenatal glucocorticoid
exposure and appropriate maternal care in the postpartum
period. These adaptations include activation of brain
OXT and PRL systems, which act to attenuate the HPA
axis activity and emotional responsiveness in the peri-
partum period, coupled with a dampening of opioid and
noradrenergic systems, which are the main excitatory
inputs of the HPA axis. If these important adaptations
are prevented, for example by chronic life stress especially
during pregnancy, hormonal or other physiological events
around birth may alter the activity of the brain CRF, OXT,
vasopressin and PRL systems thus increasing the risk for
mood disturbances and post-partum depression.
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